Effective LSTMs for Target-Dependent Sentiment Classification
نویسندگان
چکیده
Target-dependent sentiment classification remains a challenge: modeling the semantic relatedness of a target with its context words in a sentence. Different context words have different influences on determining the sentiment polarity of a sentence towards the target. Therefore, it is desirable to integrate the connections between target word and context words when building a learning system. In this paper, we develop two target dependent long short-term memory (LSTM) models, where target information is automatically taken into account. We evaluate our methods on a benchmark dataset from Twitter. Empirical results show that modeling sentence representation with standard LSTM does not perform well. Incorporating target information into LSTM can significantly boost the classification accuracy. The target-dependent LSTM models achieve state-of-the-art performances without using syntactic parser or external sentiment lexicons.1
منابع مشابه
A High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملStance Detection in Chinese MicroBlogs with Neural Networks
In this paper, we presents a stance detection system for NLPCC-ICCPOL 2016 share task 4. Our Stance Detection System can determinate whether the author of Weibo text is in favor of the given target, against the given target, or neither. We exploit LSTMs model and the average F score of our system is 56.56%. In contrast to the traditional target/aspect sentiment, the given target may not be pres...
متن کاملLeft-Center-Right Separated Neural Network for Aspect-based Sentiment Analysis with Rotatory Attention
Deep learning techniques have achieved success in aspect-based sentiment analysis in recent years. However, there are two important issues that still remain to be further studied, i.e., 1) how to efficiently represent the target especially when the target contains multiple words; 2) how to utilize the interaction between target and left/right contexts to capture the most important words in them...
متن کاملECNU: Extracting Effective Features from Multiple Sequential Sentences for Target-dependent Sentiment Analysis in Reviews
This paper describes our systems submitted to the target-dependent sentiment polarity classification subtask in aspect based sentiment analysis (ABSA) task (i.e., Task 12) in SemEval 2015. To settle this problem, we extracted several effective features from three sequential sentences, including sentiment lexicon, linguistic and domain specific features. Then we employed these features to constr...
متن کاملHead-Lexicalized Bidirectional Tree LSTMs
Sequential LSTMs have been extended to model tree structures, giving competitive results for a number of tasks. Existing methods model constituent trees by bottom-up combinations of constituent nodes, making direct use of input word information only for leaf nodes. This is different from sequential LSTMs, which contain references to input words for each node. In this paper, we propose a method ...
متن کامل